

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L. Chamberlain,
Jonathan Cohen, Zachary DeVito, Riyaz Haque, Dan Laney, Edward Luke,
Felix Wang, David Richards, Martin Schulz, Charles H. Still

Lawrence Livermore National Laboratory LLNL-PRES-637084
2

  Currently we cannot afford to tune large complex
applications for each hardware
•  Performance
•  Productivity
•  Codebase size

Lawrence Livermore National Laboratory LLNL-PRES-637084
3

Lawrence Livermore National Laboratory LLNL-PRES-637084
4

Charm++	

 Liszt

Lawrence Livermore National Laboratory LLNL-PRES-637084
5

  How can new languages help application
portability and maintainability?

  Can applications written in them perform well?

  What is the performance penalty for using them?

  What is needed to get them production ready?

Investigating the use of proxy applications

Lawrence Livermore National Laboratory LLNL-PRES-637084
6

•  Shock-hydro mini-app
•  Lagrange hydrodynamics
•  Solves Sedov Problem
•  Unstructured hex mesh
•  Single material
•  Ideal gas EOS

Lawrence Livermore National Laboratory LLNL-PRES-637084
7

  Serial

  OpenMP

  MPI

  Hybrid MPI/OpenMP

  CUDA (Fermi)

Lawrence Livermore National Laboratory LLNL-PRES-637084
8

  Loop fusion
  Data structure

transformations
  Memory allocation
  Vectorization

!"#

!"##

!"###

!" !$!% !&

'
()
*!
+*
,!
(-*
,.
-(/
0!
12
3

45)6*,!/7!-8,*.92

:*,7/,).0;*!<.(02!/0!=0-*>!?.09@!A,(9B*

6.2*>(0*
752(/0

.>>/;.-(/0
C*;-/,!>//+2
C*;-/,!.>>

Lawrence Livermore National Laboratory LLNL-PRES-637084
9

!"

!"#$

!%

!%#$

!&

& ' (
)*
++
,-
*

.-/0+1!23!451+6,7

)*++,-*!28!92:+1!;

!"

!"#$

!"#%

!"#&

!"#'

!(

!(#$

(&)$ &%

*+
,,
-.
+

/.01,2!34!562,7-8

*+,,-.+!39!:;.,!<,9,=>

Lawrence Livermore National Laboratory LLNL-PRES-637084
10

  Porting to various architectures requires
refactoring significant amounts of code

  Tuning requires even more extensive changes
  Expert knowledge needed for each architecture
  Maintaining multiple versions of code can lead to

bug control and versioning issues

Lawrence Livermore National Laboratory LLNL-PRES-637084
11

  Chapel
•  Partitioned global address space (PGAS)
•  Imperative block structured like C/C++/Fortran

  Charm++
•  Builds on C++
•  Message-driven execution

  Loci
•  Functional/relational
•  Dataflow-driven

  Liszt
•  Domain-specific language for PDEs
•  Targets CPUs and GPUs

Lawrence Livermore National Laboratory LLNL-PRES-637084
12

Model Lines of
Code

Serial 2183
OpenMP 2403
MPI 4291
MPI + OpenMP 4476
CUDA 2990

Model Lines of
Code

Chapel 1108
Charm++ 3922
Liszt 1026
Loci 742

Conventional Models Other Models

Lawrence Livermore National Laboratory LLNL-PRES-637084
13

Intel Sandy Bridge cluster at LLNL (Cab)

!"#"$

!"#$

!$

!$"

!$!% !& !' !$(

)
*+
,!
-,
.!
*/,
.0
/*1
2!
34
5

67+8,.!19!:1.,4

;/.12<!4:0=*2<!>1:*!?4#!@-,2AB

@-,2AB!$%$C

>1:*!$%$C

@-,2AB!'$C

>1:*!'$C

!"#"$

!"#$

!$

$ % &' ($) '*

+
,-
.!
/.
0!
,1.
02
1,3
4!
56
7

89-:.0!3;!<30.6

=.2>!6<2?,4@!AB20-CC!D6#!EFG

EFG!'%H

AB20-CC!'%H

EFG!H)H

AB20-CC!H)H

Lawrence Livermore National Laboratory LLNL-PRES-637084
14

Performance will improve as models mature

Intel Sandy Bridge cluster at LLNL (Cab)

!"#"$

!"#$

!$

$ % &' ($) '*

+
,-
.!
/.
0!
,1.
02
1,3
4!
56
7

89-:.0!3;!<30.6

=.2>!6<2?,4@!A,6B1!C6#!DEF

A,6B1!'%G

A,6B1!G)G

DEF!'%G

DEF!G)G

!"#"$

!"#$

!$

!$"

!$!% !& !' !$(

)
*+
,!
-,
.!
*/,
.0
/*1
2!
34
5

67+8,.!19!:1.,4

;/.12<!4:0=*2<!>?0-,=!@4#!A-,2BC

>?0-,=!$%$D

>?0-,=!'$D

A-,2BC!$%$D

A-,2BC!'$D

Lawrence Livermore National Laboratory LLNL-PRES-637084
15

Model Loop Fusion Data Structure Trans. Global Allocation SIMD Blocking Overlap

Chapel V V V
CHARM++ V V
Liszt V V V * *
Loci V V * V V

TABLE II
OPTIMIZATIONS THAT EACH MODEL MAKES EASIER.

network busy at the same time. However, overlapping in a
complex code often creates maintainability issues.

B. Applicability to each model
Some programming models reduce the amount of work

needed to optimize code, effectively increasing the portable
performance of the code for a given programmer effort. Table
II lists programming models that allow easier expression or
portability of optimizations relative to C/C++ code using MPI
and OpenMP for parallelism. We use checkmarks to denote
places where the model makes it easier for a programmer
to perform optimizations and *’s where the model makes a
compiler writer’s job easier to perform the static analysis to
optimize the code automatically.

Chapel’s domain maps can be used to implement many
high-level tuning techniques. These maps are used both to
distribute data among nodes and to specify memory layout,
parallelization strategies, and iteration order within a node.
By applying appropriate domain maps, blocking optimizations
can be achieved. Common domain maps, such as block and
cyclic, are provided within the standard library, but users can
also define their own. By changing the domain map of a
domain, all operations on its indices and arrays are rewritten
to use the specified strategy with no further modification
to the source needed. Zippered iterators [30] perform what
we define as data layout transformations. Chapel also has
asynchronous communication constructs that make it easier
to overlap computation and communication.

CHARM++ leverages over-decomposition of an application
into chares to achieve a number of optimizations. Blocking is
enabled by choosing the number/size of chares so that data
fit in cache. Communication and computation overlap occurs
naturally by scheduling multiple chares per processor, when
one chare is waiting on communication another is performing
computation. In addition, CHARM++ eases load balancing via
transparent chare migration by the runtime system. CHARM++
still allows any optimization that can be performed to a C++
application, such as loop fusion or data structure transforma-
tions, however it does not provide any support to make these
easier than in C++.

As a Domain Specific Language for PDEs on meshes, Liszt
allows a higher level expression of mesh information and
its associated calculations. This high level, domain specific
information about the problem makes it easier for a compiler
to optimize the application. In this setting, the static analysis
needed to determine profitability and safety of vectorization
and blocking is less complex. It is also easier to determine if

and when to perform optimizations such as loop fusion. By
moving this tuning to the compiler, portability is increased.
Finally, since all data are allocated in Liszt globally it performs
this optimization already, though this can be a drawback when
memory is tight.

The Loci programming model performs many optimiza-
tions for the user such as automatically generating loops
over element and node sets. While the system does not
presently implement loop fusion optimizations, this is not a
fundamental limitation and such optimizations can be im-
plemented in the future. Loci utilizes a blocking strategy
to minimize memory allocation, improve cache performance,
and access costs involved in transferring information between
loops that are potential candidates for loop fusion. The model
supports global data allocation, but defaults to the opposite
approach of minimizing memory footprint through variable
lifetime reduction and maximizing memory recycling through
a randomized greedy scheduler. Loci also utilizes aliasing
directives when synthesizing loops over sets of elements to
allow the compiler to better utilize SIMD instructions. Finally,
a work-replication optimization eliminates communication by
re-computing values on the local processor. Although overlap-
ping of communication and computation are not implemented
they can be added to the runtime system without changing the
program specification.

VII. COMPARATIVE EVALUATION

Evaluating the various strengths and weaknesses of pro-
gramming languages requires a holistic approach as there are
many factors that impact programmability, productivity and
performance. In this section, we look at the productivity of the
languages, the performance they currently achieve, and how
easy it is to tune their performance on various architectures.
For emerging languages and programming models we report
their current state along with an analysis of what the model is
capable of with further implementation work.

A. Productivity
Programmer productivity is difficult to measure in a con-

trolled manner due to the differing strengths and weaknesses
of each programmer and the fact that some languages allow
certain applications to be more effectively expressed than
others. However, source lines of code (SLOC) is the one
quantitative metric in wide use that does not require a carefully
controlled experiment. SLOC is a measure of the number of
lines of code not counting blank lines and comments. The
SLOC metric has limitations, such as the implicit assumption

Model Loop Fusion Data Structure Trans. Global Allocation SIMD Blocking Overlap

Chapel V V V
CHARM++ V V
Liszt V V V * *
Loci V V * V V

TABLE II
OPTIMIZATIONS THAT EACH MODEL MAKES EASIER.

network busy at the same time. However, overlapping in a
complex code often creates maintainability issues.

B. Applicability to each model
Some programming models reduce the amount of work

needed to optimize code, effectively increasing the portable
performance of the code for a given programmer effort. Table
II lists programming models that allow easier expression or
portability of optimizations relative to C/C++ code using MPI
and OpenMP for parallelism. We use checkmarks to denote
places where the model makes it easier for a programmer
to perform optimizations and *’s where the model makes a
compiler writer’s job easier to perform the static analysis to
optimize the code automatically.

Chapel’s domain maps can be used to implement many
high-level tuning techniques. These maps are used both to
distribute data among nodes and to specify memory layout,
parallelization strategies, and iteration order within a node.
By applying appropriate domain maps, blocking optimizations
can be achieved. Common domain maps, such as block and
cyclic, are provided within the standard library, but users can
also define their own. By changing the domain map of a
domain, all operations on its indices and arrays are rewritten
to use the specified strategy with no further modification
to the source needed. Zippered iterators [30] perform what
we define as data layout transformations. Chapel also has
asynchronous communication constructs that make it easier
to overlap computation and communication.

CHARM++ leverages over-decomposition of an application
into chares to achieve a number of optimizations. Blocking is
enabled by choosing the number/size of chares so that data
fit in cache. Communication and computation overlap occurs
naturally by scheduling multiple chares per processor, when
one chare is waiting on communication another is performing
computation. In addition, CHARM++ eases load balancing via
transparent chare migration by the runtime system. CHARM++
still allows any optimization that can be performed to a C++
application, such as loop fusion or data structure transforma-
tions, however it does not provide any support to make these
easier than in C++.

As a Domain Specific Language for PDEs on meshes, Liszt
allows a higher level expression of mesh information and
its associated calculations. This high level, domain specific
information about the problem makes it easier for a compiler
to optimize the application. In this setting, the static analysis
needed to determine profitability and safety of vectorization
and blocking is less complex. It is also easier to determine if

and when to perform optimizations such as loop fusion. By
moving this tuning to the compiler, portability is increased.
Finally, since all data are allocated in Liszt globally it performs
this optimization already, though this can be a drawback when
memory is tight.

The Loci programming model performs many optimiza-
tions for the user such as automatically generating loops
over element and node sets. While the system does not
presently implement loop fusion optimizations, this is not a
fundamental limitation and such optimizations can be im-
plemented in the future. Loci utilizes a blocking strategy
to minimize memory allocation, improve cache performance,
and access costs involved in transferring information between
loops that are potential candidates for loop fusion. The model
supports global data allocation, but defaults to the opposite
approach of minimizing memory footprint through variable
lifetime reduction and maximizing memory recycling through
a randomized greedy scheduler. Loci also utilizes aliasing
directives when synthesizing loops over sets of elements to
allow the compiler to better utilize SIMD instructions. Finally,
a work-replication optimization eliminates communication by
re-computing values on the local processor. Although overlap-
ping of communication and computation are not implemented
they can be added to the runtime system without changing the
program specification.

VII. COMPARATIVE EVALUATION

Evaluating the various strengths and weaknesses of pro-
gramming languages requires a holistic approach as there are
many factors that impact programmability, productivity and
performance. In this section, we look at the productivity of the
languages, the performance they currently achieve, and how
easy it is to tune their performance on various architectures.
For emerging languages and programming models we report
their current state along with an analysis of what the model is
capable of with further implementation work.

A. Productivity
Programmer productivity is difficult to measure in a con-

trolled manner due to the differing strengths and weaknesses
of each programmer and the fact that some languages allow
certain applications to be more effectively expressed than
others. However, source lines of code (SLOC) is the one
quantitative metric in wide use that does not require a carefully
controlled experiment. SLOC is a measure of the number of
lines of code not counting blank lines and comments. The
SLOC metric has limitations, such as the implicit assumption

Model Loop Fusion Data Structure Trans. Global Allocation SIMD Blocking Overlap

Chapel V V V
CHARM++ V V
Liszt V V V * *
Loci V V * V V

TABLE II
OPTIMIZATIONS THAT EACH MODEL MAKES EASIER.

network busy at the same time. However, overlapping in a
complex code often creates maintainability issues.

B. Applicability to each model
Some programming models reduce the amount of work

needed to optimize code, effectively increasing the portable
performance of the code for a given programmer effort. Table
II lists programming models that allow easier expression or
portability of optimizations relative to C/C++ code using MPI
and OpenMP for parallelism. We use checkmarks to denote
places where the model makes it easier for a programmer
to perform optimizations and *’s where the model makes a
compiler writer’s job easier to perform the static analysis to
optimize the code automatically.

Chapel’s domain maps can be used to implement many
high-level tuning techniques. These maps are used both to
distribute data among nodes and to specify memory layout,
parallelization strategies, and iteration order within a node.
By applying appropriate domain maps, blocking optimizations
can be achieved. Common domain maps, such as block and
cyclic, are provided within the standard library, but users can
also define their own. By changing the domain map of a
domain, all operations on its indices and arrays are rewritten
to use the specified strategy with no further modification
to the source needed. Zippered iterators [30] perform what
we define as data layout transformations. Chapel also has
asynchronous communication constructs that make it easier
to overlap computation and communication.

CHARM++ leverages over-decomposition of an application
into chares to achieve a number of optimizations. Blocking is
enabled by choosing the number/size of chares so that data
fit in cache. Communication and computation overlap occurs
naturally by scheduling multiple chares per processor, when
one chare is waiting on communication another is performing
computation. In addition, CHARM++ eases load balancing via
transparent chare migration by the runtime system. CHARM++
still allows any optimization that can be performed to a C++
application, such as loop fusion or data structure transforma-
tions, however it does not provide any support to make these
easier than in C++.

As a Domain Specific Language for PDEs on meshes, Liszt
allows a higher level expression of mesh information and
its associated calculations. This high level, domain specific
information about the problem makes it easier for a compiler
to optimize the application. In this setting, the static analysis
needed to determine profitability and safety of vectorization
and blocking is less complex. It is also easier to determine if

and when to perform optimizations such as loop fusion. By
moving this tuning to the compiler, portability is increased.
Finally, since all data are allocated in Liszt globally it performs
this optimization already, though this can be a drawback when
memory is tight.

The Loci programming model performs many optimiza-
tions for the user such as automatically generating loops
over element and node sets. While the system does not
presently implement loop fusion optimizations, this is not a
fundamental limitation and such optimizations can be im-
plemented in the future. Loci utilizes a blocking strategy
to minimize memory allocation, improve cache performance,
and access costs involved in transferring information between
loops that are potential candidates for loop fusion. The model
supports global data allocation, but defaults to the opposite
approach of minimizing memory footprint through variable
lifetime reduction and maximizing memory recycling through
a randomized greedy scheduler. Loci also utilizes aliasing
directives when synthesizing loops over sets of elements to
allow the compiler to better utilize SIMD instructions. Finally,
a work-replication optimization eliminates communication by
re-computing values on the local processor. Although overlap-
ping of communication and computation are not implemented
they can be added to the runtime system without changing the
program specification.

VII. COMPARATIVE EVALUATION

Evaluating the various strengths and weaknesses of pro-
gramming languages requires a holistic approach as there are
many factors that impact programmability, productivity and
performance. In this section, we look at the productivity of the
languages, the performance they currently achieve, and how
easy it is to tune their performance on various architectures.
For emerging languages and programming models we report
their current state along with an analysis of what the model is
capable of with further implementation work.

A. Productivity
Programmer productivity is difficult to measure in a con-

trolled manner due to the differing strengths and weaknesses
of each programmer and the fact that some languages allow
certain applications to be more effectively expressed than
others. However, source lines of code (SLOC) is the one
quantitative metric in wide use that does not require a carefully
controlled experiment. SLOC is a measure of the number of
lines of code not counting blank lines and comments. The
SLOC metric has limitations, such as the implicit assumption

Other features, such as, load
balancing and fault tolerance
available in some languages,
but outside this paper’s scope.

Lawrence Livermore National Laboratory LLNL-PRES-637084
16

for (int i=0; i < nodes; ++i) for (int i=0; i < nodes;
++i)
// Calculate new Velocity // Calculate new
Velocity
 xdtmp = xd[i] + xdd[i] * dt ; xdtmp = xd[i] + xdd[i] *
dt ;
 if(FABS(xdtmp) < u_cut) if(FABS(xdtmp) < u_cut)
 tmp = Real_t(0.0); tmp = Real_t(0.0);
 xd[i] = xdtmp ; xd[i] = xdtmp ;
for (int i=0; i < nodes; ++i) // Calculate new Postion
 // Calculate new Postion x[i] += xd[i] * dt ;
 x[i] += xd[i] * dt ;

for (int i=0; i < nodes; ++i) for (int i=0; i < nodes;
++i)
// Calculate new Velocity // Calculate new
Velocity
 xdtmp = xd[i] + xdd[i] * dt ; xdtmp = xd[i] + xdd[i] *
dt ;
 if(FABS(xdtmp) < u_cut) if(FABS(xdtmp) < u_cut)
 tmp = Real_t(0.0); tmp = Real_t(0.0);
 xd[i] = xdtmp ; xd[i] = xdtmp ;
for (int i=0; i < nodes; ++i) // Calculate new Postion
 // Calculate new Postion x[i] += xd[i] * dt ;
 x[i] += xd[i] * dt ;

for (int i=0; i < nodes; ++i) for (int i=0; i < nodes;
++i)
// Calculate new Velocity // Calculate new
Velocity
 xdtmp = xd[i] + xdd[i] * dt ; xdtmp = xd[i] + xdd[i] *
dt ;
 if(FABS(xdtmp) < u_cut) if(FABS(xdtmp) < u_cut)
 tmp = Real_t(0.0); tmp = Real_t(0.0);
 xd[i] = xdtmp ; xd[i] = xdtmp ;
for (int i=0; i < nodes; ++i) // Calculate new Postion
 // Calculate new Postion x[i] += xd[i] * dt ;
 x[i] += xd[i] * dt ;

Global Allocation or Large TLB Pages Global Allocation or Large TLB Pages Global Allocation or Large TLB Pages

Real x[n]; Struct xyz {Real x,y,z;}
Real y[n]; coords xyz[n];
Real z[n];

Lawrence Livermore National Laboratory LLNL-PRES-637084
17

Liszt knows a mesh is being used Loci knows more dependence information

Lawrence Livermore National Laboratory LLNL-PRES-637084
18

4 MPI processes
on 4 processors

16 Charm++ objects
on 4 processors

Lawrence Livermore National Laboratory LLNL-PRES-637084
19

  Performance is possible with newer approaches
  New models add features that enable portable

performance
  Smaller codebases that are easier to read and

possibly maintain
  However, we need more features for general use

Lawrence Livermore National Laboratory LLNL-PRES-637084
20

  Original port by Cray
assumed that the mesh is
structured
•  Block -> Unstructured change

~ 6 hours
•  25 extra lines of code!

  Now supports fully
unstructured meshes

  LULESH is now part of
Chapel test suite.

Lawrence Livermore National Laboratory LLNL-PRES-637084
21

  First compute-intensive code ported
•  Identified areas to improve the language
—  New abstractions
—  Fine-grained control over data and workload distribution

  Work led to the motivation for Tera

Lawrence Livermore National Laboratory LLNL-PRES-637084
22

  Implemented additional support for hexahedral
zones

  Improvements to message scheduler
  Found two bugs in the underlying

communication

Lawrence Livermore National Laboratory LLNL-PRES-637084
23

  New models have many attractive features for
portable performance.

  Some have performance comparable or better to
a C/C++ implementation.

  Application scientist and model developer co-
design leads to mutually beneficial
improvements.

Lawrence Livermore National Laboratory LLNL-PRES-637084
24

  Exploration of other models:
•  OpenACC
•  OpenCL
•  UPC

  LULESH 2.0
•  Multi-region physics
•  Adds load imbalance
•  Charm++ port planned
•  Tera port planned

Lawrence Livermore National Laboratory LLNL-PRES-637084
25

  New models have many attractive features for
portable performance.

  Some have performance comparable to or better
than a C/C++ implementation.

  Co-design by application scientists and
language/prog. model developers leads to
mutually beneficial improvements.

https://codesign.llnl.gov/lulesh.php

